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Abstract – Complex networks grow subject to structural constraints which affect their measurable
properties. Assessing the effect that such constraints impose on their observables is thus a crucial
aspect to be taken into account in their analysis. To this end, we examine the effect of fixing the
strength sequence in multi-edge networks on several network observables such as degrees, disparity,
average neighbor properties and weight distribution using an ensemble approach. We provide a
general method to calculate any desired weighted network metric and we show that several features
detected in real data could be explained solely by structural constraints. We thus justify the need
of analytical null models to be used as basis to assess the relevance of features found in real data
represented in weighted network form.

Introduction. – Modern complex networks theory has found many applications since
its dawn. In particular, the explosion of information technologies has given rise to large-
scale, high-dimensional data sets, in which hidden relations might now be uncovered. This
has fostered data-driven studies in a wide spectrum of fields ranging from biology [1] to social
sciences [2], including transportation studies [3], genomics [4], ecology or bibliometrics [5].
The repertoire of available networks for data modeling has thus grown accordingly: binary
or weighted [6, 7], directed or undirected, and also simple or multilayer [8, 9] structures
have been used. However, extending some of the most basic concepts and tools, such as
clustering coefficient, centrality measures, and even finding suitable null models in each case
has proven harder than expected [10], giving rise to multiple definitions in some cases and,
consequently, to some controversy.

In fact, the need to distinguish different types of so-called weighted networks according
to the nature of the events being represented has been pointed out recently [11]. If nodes
accept multiple distinguishable connections, then one can speak of multi-edge networks, and
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it is in this scenario where we propose a flexible, general theory for null-model generation.
Our results allow to compute exact analytical expressions for network observables gener-
ated under random conditions but preserving some given properties or constraints from the
original data [12, 13]. This allows to quantify the relevance of the observed features, which
given the high-dimensionality of the studied data sets in real complex networks might not
be trivial to detect otherwise [14]. A classical example where this circumstance is important
are Origin-Destination matrices (OD), where the mobility of agents between departure and
arrival nodes is represented as weighted networks: usually the average total flow incoming
or outgoing from each site, which corresponds to the strength of a node, is constrained
by several factors such as population or density of commercial areas. This fact needs to
be assessed on the observed data as it can generate complicated spatial patterns that can
produce spatial correlations such as the so-called gravity laws of transportation [3].

In this letter, the effect of fixing an arbitrary strengths sequence on several network
observables is thoroughly studied. The obtained results serve as a complement to its binary
counterpart, the classical configurational model for arbitrary degree sequences [15]. We
develop the full edge and node statistics as well as first order correlations using an application
of a general ensemble approach developed in [11], providing not only average expected values
for the observables but also precise bounds for its fluctuations and we compare the obtained
results with simulations, yielding excellent agreement. By particularizing our general results
to the case of power law distributed strengths, commonly found in real data [16–20], we
demonstrate how the null-model expectations of some widely used weighted network metrics,
which are generally considered a sign of relevant correlations (see [21] and references therein),
can instead be seen as just a consequence of the particular form of the imposed strength
sequence, and hence may not represent any unexpected property of the network under study.

Theoretical Framework. – We start by considering a multi-edge undirected network
with a fixed number of nodes N and hence a total of L = N(N + 1)/2 possible edges. Each
edge has an associated integer weight tij ∈ {0, 1, 2 . . . }, and the strength of a node i is
defined as si =

∑
j tij . We further consider a fixed strength sequence {ŝi} ; i ∈ 1, N , so

that we have a total of T̂ =
∑
i ŝi distinguishable events to be randomly allocated among

L edges. Note that the difference between distinguishable and non-distinguishable events is
crucial, as it happens usually in statistical mechanics, because the resulting statistics of the
ensembles one can consider depend on this property (see [11,22] for an extended discussion).
As for the notation, note also that in general we will use x̂ to denote the value to which a
variable x is being constrained

To clarify the elements of our system, we can specify them for the case of an OD study as
an illustrative example: Nodes correspond to different locations, events to individual trips
between locations, the strengths of nodes to the fixed amount of travelers departing/entering
each location and the weights correspond to the observed flows between locations. In this
work we consider the case where self-loops are allowed for simplicity but the methodology
can be easily extended to the case where no-self-loops are accepted or even to directed
networks.

Under the circumstances described, in analogy to statistical mechanics for classical sys-
tems, one can consider the Grand-Canonical (GC) ensemble of graphs (see [23, 24] for dif-
ferent examples of other network ensembles) fulfilling on average the proposed constraints,
i.e. {〈si〉 =

∑
j 〈tij〉 = ŝi} (throughout this letter 〈x〉 will refer to the ensemble average

of random variable x whereas x̄ will refer to the graph average of variable x over a single
realization). This means that both the occupation numbers or weights tij and the node
strengths si =

∑
j tij are integer random variables, and that each network belonging to

the ensemble corresponds to a different realization of such variables. However, relative fluc-
tuations around the constraints 〈si〉 = ŝi vanish in the large event limit [11]. The GC
ensemble yields independent Poisson statistics for the occupation numbers tij with mean
〈tij〉 = βxixj , where {xi} can be considered as node-specific hidden variables [25–27]. The
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values of {xi} can be obtained by solving the N saddle point equations ŝi = βxi
∑
j xj

that define the constraints of the system, which correspond to fixing the (ensemble) average
strength of each node in the network. This set of equations is easily solvable analytically
yielding xi = ŝi ∀i and β = T̂−1. In this way the expression 〈tij〉 = ŝiŝj/T̂ is reached:
the left-hand side is the ensemble average of a random variable, while the right-hand side
is a result expressed in term of the constraints. In our case the {ŝi} are the only fixed
quantities and hence we must take them as the basic variables from which to derive the
rest of weighted network properties: All nodes sharing the same strength value ŝi = ŝ are
statistically equivalent, and possess self-averaging properties (likewise all edges connecting
nodes with the same pair of strength values). In what follows, we show how to proceed to
obtain some particular network metrics, although the procedure is fully general and permits
to obtain any desired property.

General methodology. – Many network metrics widely used in the literature can be
written as a quotient of functions of the edge weightsM = x(tij)/y(tij). In our framework,
{tij} are random variables and computing 〈M〉 is not straightforward. We thus need to rely
on approximations, expanding the expressions in Taylor series around their mean values and
then taking the ensemble average of the first terms of the sum.

〈M〉 ' 〈x〉〈y〉

(
1 +
〈y2〉
〈y〉2 −

〈xy〉
〈x〉〈y〉

)
(1)

σ2
M '

〈x〉2

〈y〉2

(〈
x2
〉

〈x〉2 +

〈
y2
〉

〈y〉2 − 2
〈xy〉
〈x〉〈y〉

)
. (2)

These expressions can be used to compute expected values and and fluctuations of any
network metric expressed as a ratio of functions of the occupation numbers x(tij), y(tij)
provided that the moments (〈x〉 ,

〈
x2
〉
, 〈y〉 ,

〈
y2
〉
) in the right-hand side can be evaluated.

This is usually the case when x(tij), y(tij) are algebraic expressions of {tij} (which are uncor-
related random variables). For most metrics M considered in this Letter, the calculations
of the moments of x(tij) and y(tij) are lengthly, but follow from a general methodology
without further difficulty1. We thus subsume them in the Appendix also explaining the
general strategy used in their calculation, stating here only the key results.

Distribution of weights. – We start by computing the distribution of occupation
numbers or weights

P (t) =
1

E

∑

ij

δ(t, tij) (3)

(E =
∑
ij Θ(tij) refers to the total number of existing edges), which has been reported to

have broad forms on empirical data for airport flow [16], cargo ship transport [17], public
transport in cities [18], commuting [19] or face to face interactions [20] among others.

Applying Eq. (1) to the case of P (t) yields,

〈P (t)〉 =

〈∑
ij δ(t, tij)∑
ij Θ(tij)

〉
'
∑
ij e
−〈tij〉 〈tij〉t

t!〈E〉 +O(〈E〉−2), (4)

being Θ(x) the Heaviside step function. Figure 1 shows the distribution of occupation
numbers for existing edges and its associated standard deviation (see Eq. (9) in the appendix)
for three networks generated using power law distributed strength sequences (γ = 1.5, 2.5)
and different graph-average strength s̄ = T̂ /N . We can see that the form of the resulting
distribution is broad due to the imposed form of the strength sequence, and hence is not a
sign per se of any interesting property of the multi-edge network being studied. Moreover,
its shape strongly depends on the total number of observed events T̂ .

1And can be easily implemented using any standard mathematical symbolic software.
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Figure 1: (color online) The effect of the strength sequence on network observables. (Upper):
Ensemble average of distribution of occupation numbers over existing edges (log-binned) and ana-
lytical predictions given by expression (4) and its standard deviation (see Appendix, Eq. (9)) for
power law distributed strength sequences with N = 104 and different exponents for 1000 repeti-
tions. The dependence on sampling s̄ = T̂ /N is apparent. (Lower): Degree-strength relationship
for the same networks as earlier (average) and theoretical predictions from equation (5). Standard
deviation are represented as error bars and lines of constant slope are provided as a guide to the
eye.
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Degrees and strengths. – Having tackled the occupation number statistics of the
network, in what follows we consider its node-related properties. We have that the strengths
si =

∑
j tij will also be Poisson distributed random variables, being sums of independent

occupation numbers. Moreover, since the binary projection of occupation numbers Θ(tij)
are Bernoulli distributed variables with parameter P (tij > 0) = 1 − e−〈tij〉 [11] one can
can also compute the associated degrees ki of the nodes, which will be sums of independent
Bernoulli random variables 2. We have that,

〈k(ŝi)〉 =

〈∑

j

Θ(tij)

〉
=
∑

j

P (tij > 0) =

=
∑

j

(
1− e−〈tij〉

)
= N −

∑

j

e−
ŝiŝj

T̂

(5)

σ2
k(ŝi)

=
∑

j

σ2
Θ(tij) =

∑

j

e−〈tij〉
(

1− e−〈tij〉
)

=

= N − 〈k(si)〉 −
∑

j

e−2
ŝiŝj

T̂ .
(6)

which constitutes an extremely accurate prediction (see Fig. 1 lower panel). The asymptotic
cases for the ensemble averages are easy to asses: For small strengths we have that ŝ �
T̂ /ŝ′ ∀ŝ′ which leads expression (5) to 〈k(ŝ)〉 ∼ ŝ (converging to a Poisson distribution for
degrees due to the properties of the Poisson Bernoulli distribution), while for large strengths
one has ŝŝ′ � T̂ ∀ŝ′ which leads to fully connected nodes 〈k(ŝ)〉 ∼ N with vanishing variance.

Results comparing simulations and equation (5) are shown in Fig. 1 (lower panel), where
an interesting transition is observed for γ < 2: The degrees are exactly equal to the strengths
for small values of ŝ (as expected by conservation of the edges) and evolve to a scaling of
the type k(ŝ) ∼ ŝγ−1 that finally leads to a saturation due to the bounded nature of the
observables (k(ŝ) ≤ N).

The important result to take home here is that a scaling relation of the kind k(s) ∼ sβ

is not always a reliable trace of correlations. More concretely, we have seen that in our
framework, and for the case of power-law distributed strength sequences in particular, it is
solely a consequence of the imposed constraints. In other cases, it might or might not be
an indicator of correlations, but one cannot assume either case a priori : Since this metric
heavilly depends on the strength sequence, it always requires comparison with a null model.

Disparity, Average neighbor properties and general metrics. – In recent times,
efforts have been devoted to extend well-known magnitudes on binary graphs to weighted
graphs: Having appropriate null-models for multi-edge graphs permits to assess the appli-
cability of such weighted extensions [29]. To this end, one can use the results of the GC
ensemble to compute with high accuracy any network metric expressed in terms of tij : As
an example we consider widely used magnitudes such as the disparity Y2(si) =

∑
i 6=j t

2
ij/s

2
i

[30] and weighted neighbor average strength swnn(si) =
∑
j tijsj/si [31]. Using again Eq. (1),

and the fact that {tij} are a set of Poisson-distributed, independent random variables, one

2The distribution of such variables is called Poisson Bernoulli and has well-studied properties [28], albeit
their moments are difficult to compute. One can, however, give bounds to the error committed whenever
assuming a Poisson approximation also for the degrees.
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Figure 2: (color online) The accuracy of the GC predictions. Ensemble average (A,E) and standard
deviation (B,F) for individual node disparity Y2 and weighted neighbor average strength swnn for
power law distributed sequences with s̄ = 1000 and γ = 2.5. C,D,G,H: Histogram of relative error
between theory and simulations averaged over 1000 repetitions for the values in Figs. A,E and
B,F. A single outlier corresponding to the lowest value of σ for both the disparity and the average
neighbor strength is not shown in the histogram on Figs. C,G.
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reaches after some algebra the following expressions

〈Y2(ŝi)〉 '
1 + T̂2

T̂ 2
ŝi

1 + ŝi


1 +

(
T̂ 2 − T̂2

)
(2ŝi + 3)

(ŝi + 1)
2
(
T̂2ŝi + T̂ 2

)


 (7)

〈swnn(ŝi)〉 '
(

1 +
T̂2

T̂

)(
1− T̂2 + T̂ ŝi − ŝ2

i

T̂ (T̂ + T̂2)

)
. (8)

where T̂n ≡
∑
ŝni . The average values and their fluctuations are in excellent agreement with

the simulations, as can be seen from Fig. 2 panels A,B,E,F. The expressions corresponding
to σ2

swnn
and σ2

Y2
, and some details on how to compute them, can be found on the Appendix.

The results show several interesting features: On the one hand, the expectation for the
disparity is not Y2(ŝ) ∼ k−1

i as assumed under a total random allocation of edge weights
[30], but rather decays as Y2 ∼ ŝ−1

i and rapidly converges to a plateau, independent of the
chosen strength distribution. The weighted average neighbor strength displays an almost
flat behavior which is a correct indicator of absence of correlations at the node level. On the
other hand, the fluctuations of both magnitudes decay in a power law form as the strength
of the node increases: This fact can be easily understood as increased connectedness imply
higher availability of sampling.

Simulations. – To quantify the precision of our predictions, we computed the his-
tograms of the relative error generated per node when calculating a given property z,
ε(z) = (〈z〉si − 〈z〉th)/〈z〉si, where the subindices si stand for the Micro-Canonical (MC)
simulations3 and th for the (GC) theoretical predictions in equations (7) and (8). The
histograms in Fig. 2 panels C,D,G,H show the accuracy of the obtained results, providing
numerical evidence for the equivalence between the MC simulations and the GC predictions,
which is expected in the thermodynamic limit when an infinite sampling of events T̂ → ∞
is available. Even when this requisite is not met, the use of the theory presented here con-
stitutes an excellent approximation as shown in Fig. 3, where the relative error averaged
over all nodes between ensemble expected GC magnitudes and simulations is shown for the
different metrics considered for a wide range of values of sampling.

Conclusions. – In the present letter, we have provided a theoretical framework for
multi-edge networks with a fixed strength sequence that can be used to assess the impact
of this structural constraint on the observables of real networks. We provide closed statis-
tical forms for the edge and node statistics by means of a GC ensemble formalism, which
coincide with great accuracy with simulations in the Micro-Canonical ensemble, for which
we additionally provide the software in [33].

The general results for any given strength sequence have been studied, and precise an-
alytical closed forms of both the average expected values and fluctuations of some widely
used network metrics such as the existing occupation number distribution, node degree and
strength, disparity and first order neighbor correlations have been obtained. We have fur-
ther used the case of power law distributed sequences as an example to show that the effect
of the skewness of this distribution over some widely used network metrics can explain some
of the correlations detected in real weighted complex networks.

The effects of the strength sequences are remarkable in all the metrics considered, which
stresses the need for real data to be tested against appropriate null models to assess the
relevance of observed properties. Interestingly, second order neighbor correlation properties
such as clustering coefficients and its different weighted versions [10] could be similarly

3 The simulations have been performed using a general configuration model rewiring schema with allowed
self-loops and multiple collections between links [32]. The code for the generation of multi-edge networks
and details on the implementation can be found in [33] .
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Figure 3: (color online) Convergence between ensembles with increased sampling. Relative error
between ensemble average predictions and simulations, averaged over all nodes for degree, disparity
and average neighbor strength for different values of sampling s̄ = T̂ /N for 1000 repetitions each
point, γ = 2.5 and N = 2000.

computed with the methodology presented, albeit they lead to more complicated expressions.
We leave this to future research.

The blessing of big data may also be its dearest danger: High dimensionality data sets
require sophisticated null-models to detect the effects of the system constraints on the given
observables and hence comparison with a null model to assess the relevance of observed fea-
tures in real data is always needed. The present application of ensemble theory to networks
yielding exact results for both average values and fluctuations aims to draw attention to this
problem and to close this gap for the case of multi-edge networks.
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Appendix. – We gather here the expressions for the standard deviation of all the
metrics considered.
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σ2
P (t) '

Q1

〈E〉2
(

1−Q2

Q1
+

1

〈E〉Q1

[
1−2

R1

Q1

]
− R2

〈E〉2Q1

)
(9)

σ2
Y2
' T̂−2

1

(
a3ŝ

3
i + a2ŝ

2
i + a1ŝi + a0

(ŝi + 1)
4

)
(10)

σ2
swnn
' b−1

1

ŝi
+ b0 + b2ŝ

2
i + b3ŝ

3
i . (11)

where E is the number of present edges and we have defined the following notation:

pij(t) ≡ e−〈tij〉 〈tij〉t /t! 〈tij〉 = ŝiŝj/T̂ (12)

Q1 =
∑

ij

pij(t) R1 =
∑

ij

pij(t)pij(0) (13)

Q2 =
∑

ij

(pij(t))
2 R2 =

∑

ij

(1− pij(0))2 (14)

a3 = −4
(
T̂ 2

2 − T̂1T̂3

)
b2 = 2T̂2/T̂

3
1 (15)

a0 = 2T̂ 4
1 − 2T̂2T̂

2
1 b3 = −2/T̂ 2

1 (16)

a2 = 2
([
T̂ 2

1 − 5T̂2

]
T̂2 + 4T̂1T̂3

)
(17)

a1 = T̂ 4
1 + 2T̂2T̂

2
1 + 4T̂3T̂1 − 7T̂ 2

2 (18)

b−1 =
(
T̂1

[
T̂2 + T̂3

]
− T̂ 2

2

)
T̂−2

1 (19)

b0 =
(
−T̂ 2

2 + T̂1

[
T̂2 + 3T̂3

]
− T̂4

)
T̂−3

1 (20)

with T̂n ≡
∑
i ŝ
n
i . The calculations leading to these results are admitedly tedious, but

follow directly from Eqs. (1) and (2) and are of no particular difficulty beyond algebraic
manipulation and carefull reordering of the sums. As an illustrative example, consider the
disparity Y2(si) for node i, defined as

Y2(si) =
∑

j 6=i

t2ij
s2
i

(21)

Identifying x ≡∑j 6=i t
2
ij and y ≡ s2

i , Eq. (1) can be readily applied. In order to approximate

〈Y2(si)〉 and σY2 , we need to compute 〈x〉 , 〈y〉 ,
〈
x2
〉
,
〈
y2
〉

and 〈xy〉. Let us show in full detail,

as an illustrative example, how to compute
〈
x2
〉

in this case. First, we expand x2 as follows,

x2 =
∑

j 6=i,
k 6=i

t2ijt
2
ik =

∑

j 6=i,
k 6=j,i

t2ijt
2
ik +

∑

j 6=i

[
t4ij + 2t2ijt

2
ii

]
+ t4ii, (22)

so that when the ensemble average is taken, all products factorize (they correspond to
different pairs of values ij, which are independent),

〈
x2
〉

=
∑

j 6=i,
k 6=j,i

〈
t2ij
〉 〈
t2ik
〉

+
∑

j 6=i

[〈
t4ij
〉

+ 2
〈
t2ij
〉 〈
t2ii
〉]

+
〈
t4ii
〉

(23)
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Finally, since the variables tij are Poisson-distributed, we can compute their moments

(
〈
t2ij
〉

= 〈tij〉 (1 + 〈tij〉)), and using that 〈tij〉 = ŝiŝj/T̂ , and after some algebra, we get
to

〈
x2
〉

=
T̂ 2

2 ŝ
4
i

T̂ 4
1

+

(
2T̂2

T̂ 2
1

+
4T̂3

T̂ 3
1

)
ŝ3
i +

(
6T̂2

T̂ 2
1

+ 1

)
ŝ2
i + ŝi (24)

The rest of the terms can be computed in a similar vein, leading to

〈x〉 =
T̂2ŝ

2
i

T̂ 2
1

+ ŝi 〈y〉 = ŝ2
i + ŝi (25)

〈xy〉 =
T̂2ŝ

4
i

T̂ 2
1

+

(
5T̂2

T̂ 2
1

+ 1

)
ŝ3
i +

(
4T̂2

T̂ 2
1

+ 3

)
ŝ2
i + ŝi (26)

〈
y2
〉

= ŝ4
i + 6ŝ3

i + 7ŝ2
i + ŝi (27)

Finally, inserting Eqs. (24-27) into Eq. (1) and some simplification leads to the desired result,
Eqs. (7) and (10).
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